
Clang Data Model REST API

User manual

Table of Contents
1. Introduction... 1
2. Requirements... 1
3. Data model... 2
4. REST requests.. 3

4.1. Basics... 3
4.1.1. REST URLs.. 3
4.1.2. REST methods... 3

4.2. REST requests.. 4
4.2.1. Query parameters... 4
4.2.2. Request body.. 4

4.3. REST responses... 4
4.3.1. Response codes... 4
4.3.2. Headers.. 5
4.3.3. Body... 5

5. Examples.. 5
5.1. Data model description... 5
5.2. Simple data requests.. 5
5.3. Complex data requests... 6
5.4. Restricting selected data... 8

6. Appendices... 9
6.1. Supported data types.. 9
6.2. Data model example documentation...10

1. Introduction
Clang Extended Data allows you to define a model for data that can be related to customers present in the
Clang CRM. For more information on Clang Extended Data please refer to the appropiate documents. This
manual describes how to access the data that are stored as Clang Extended Data by way of the public REST
API (Application Programming Interface). This interface allows the following operations on the data contained
in a data model:

• reading

• inserting

• updating

• deleting

As an added feature, the REST API is self-documenting, in that you may request meta-information on the
actual data model using the REST API itself.

2. Requirements
In order to use the REST API you need the following at your disposal:

• Any programming environment that allows you to make HTTP requests and process the responses
will allow you to make REST API calls. In particular, you need to be able to generate and parse
JSON (JavaScript Object Notation).

• You need a base URL and an access token, that you may obtain by requesting these at E-Village.
Note that if you already have a SOAP token for the brand you wish to access, you may also use this
with the REST API.

3. Data model
This manual uses a simple data model as the basis for explaining how to use the REST API. Suppose we're
tracking orders at a restaurant that delivers pizzas. A customer may have placed any number of orders, and
each order may contain any number of pizzas. The choice of pizzas however is from a menu which is the
same for all customers. This is expressed in the data model displayed in Illustration 1.

The depicted customer has placed three orders over time, the first two orders containing three different types
of pizza, and the third order only one. The ordered pizzas refer to a list that contains information on the
pizzas themselves. In the schematic these references are only displayed for the first order. Each customer in
the Clang CRM has a record with orders, but these all refer to the same list of pizzas.

The design described above is expressed in the model displayed in Illustration 2.

The model has the following properties:

• The customer table is always defined, and has no columns, since the customer data are stored in
the Clang CRM.

• A customer contains one or more orders. In this simple model an order has a delivery address, a text
field for remarks, and a status flag indicating whether or not the order has been delivered.

• An order contains one or more ordered pizzas. An ordered pizza stores the type of pizza, the
number of pizzas ordered for this type, and another text field for remarks.

• An ordered pizza looks up additional information on the pizza by means of the pizza column, which
actually stores a reference to the pizza table.

Illustration 1: Schematic model of orders for a customer.

Illustration 2: Data model of the pizza orders.

4. REST requests

4.1. Basics
The basic concept behind REST (REpresentational State Transfer) is twofold:

• A resource is uniquely identified by a URL.

• Operations are implemented as HTTP requests using a specific method.

By making correctly composed requests to a specific URL using the correct HTTP request method, all
operations provided by the API can be performed.

4.1.1. REST URLs

The base URL for the Clang Data Model REST API is:

https://example.com/app/api/rest/public/v2/dataextension

The domain name depends on the portal and brand you intend to make requests for. Addressing resources
in the data model is done by appending the resource names and when necessary the resource ids to the
URL. For example, the URL

https://.../dataextension/pizzas

accesses all resources in the pizza table. In this example and all examples below the URL is displayed
shortened, but of course all requests need to be done using the complete URL. The URL

https://.../dataextension/pizzas/clang_523ae306ee3bf

identifies only the pizza with id clang_523ae306ee3bf in the pizzas table. All resources in tables in the data
model automatically receive an id field named clang_id with a generated unique content with the prefix
'clang_'. It is not possible to assign ids using the API or any other way. A special id is used for the customer
table. Customers are assigned the Clang CRM customer id, prefixed with 'clang_'. As an example, the record
for the Clang customer with customer id 42 is addressed as

https://.../dataextension/customer/clang_42

When tables are related using a contains relation, they are addressed as subresources within the resource
that contains them. For example

https://.../dataextension/customer/clang_42/order

accesses all orders by the customer with id 42. Taking it one step deeper

https://.../dataextension/customer/clang_42/order/clang_523ae3385d12c/orderedpizza

points to all the pizzas in the order with id clang_523ae3385d12c for the customer with id 42. When a
subresource is requested, the URL must identify all containing resources. For example, it is not possible to
access order data without specifying the customer. The following URL will return an error:

https://.../dataextension/customer/order/

NB: the customer table is always defined. Regardless of the locale you may be working in in Clang, the
REST API only recognizes the name 'customer'.

4.1.2. REST methods

The REST API supports the following methods. The results of the request may vary depending on whether
you specify an id in the resource URL.

HTTP method without id with id

GET return all resources return identified resource

POST add new resource invalid request

PUT invalid request update identified resource

DELETE invalid request delete identified resource

4.2. REST requests

4.2.1. Query parameters

Requests are made to the URL that identifies the correct resource, using one of the described methods.
Additional parameters are passed in the query string of the request.

Parameter Value Remarks

format 'json' (default) or 'html' 'html' returns documentation rather than data

token the authentication token mandatory

fields[] limit the returned data may occur more than once

4.2.2. Request body

In case of POST or PUT requests, the actual resource data are passed in the request body. These data need
to be sent as JSON. In case of GET and DELETE requests, the request body should not be present.

In Appendix 6.1 the data types supported by the REST API are described.

4.3. REST responses

4.3.1. Response codes

The REST API responds using the following response codes.

Code Message Meaning

200 Ok The request completed succesfully

304 Not modified The request returns the same data as a previous GET request with
the same properties.

400 Bad request The request is incorrectly formulated.

401 Unauthorized The request is not done with sufficient authorization.

403 Forbidden The request is not allowed access to the resource.

404 Not found The requested resource is not present.

405 Method not allowed The requested operation is not allowed.

410 Gone The requested resource is not present, and no alternative location
is known.

423 Locked The requested resource is present, but access to the resource is
not possible at the time of the request.

500 Internal server error An error occurred while processing the request.

501 Not implemented The requested method is not implemented in the API.

503 Service unavailable The REST interface is not accessible at the time of the request.

The exact nature of any errors (codes in the 400 range) may depend on the exact request.

4.3.2. Headers

REST responses provide the usual HTTP response headers, and the REST interface may add custom
headers.

Header Content

X-Resource The URL of the resource that was created or modified.

X-Clang-API-Error Additional information in case an error was returned.

In case of POST and PUT requests, no data are returned in the response. If the inserted or updated data are
required, an additional GET request should be performed to the URL provided in the X-Resource header.

4.3.3. Body

Only in the case of GET requests will a REST response contain data in the response body, in the form of
JSON. The data returned by the REST interface will contain the information described in the data model, and
add metadata that can be recognized by the prefix 'clang_' to the field names. The following metadata may
be present in the data:

Field Value

clang_id The id of the resource, which may be used in request URLs.

clang_createdat The timestamp of creation of the resource.

clang_createdby The Clang user that created the resource, often the user associated with the
API token.

clang_modifiedat The timestamp of the last modification of the resource.

clang_modifiedby The Clang user that last modified the resource, often the user associated
with the API token.

Note that you can't set or modify metadata, it is maintained automatically by the API.

5. Examples
This chapter describes the step-by-step process of maintaining data in the data model using examples of
requests and responses. In the requests we make use of a dummy access token and a non-existing domain
name. Please replace these with the values appropriate for your environment.

5.1. Data model description
The structure of the data model can be directly requested using the REST API. A GET request with a 'format'
query parameter containing 'html' and a valid token will return a description of the data model. See appendix
6.2 for the documentat of the model used in this manual. This document was requested with the URL

https://.../dataextension?format=html&token=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

For brevity we will be shortening the access token in further examples.

5.2. Simple data requests
Assuming we're starting out with a completely empty data model, we need to add data before we can
continue. Inserting is done by using POST requests. First we're adding some pizzas to the menu by using a
POST request to the URL

https://.../dataextension/pizza?token=xxxxxxxx

The body consists of the following JSON:

{

“name”: “Napolitana”

}

If this request is completed successfully, the response will contain an X-Resource header:

X-Resource: https://.../dataextension/pizza/clang_523c0bc14a1bb?format=json

Note the id in the URL. We can now retrieve the data from the model using a GET request this URL. We can
omit the 'format' header, since JSON is the default format, but we need to add our token:

https://.../dataextension/pizza/clang_523c0bc14a1bb?token=xxxxxxxx

The response contains the information we sent, and the metadata the API added:

{

 "name":"Napolitana",

 "clang_id":"clang_523c0bc14a1bb",

 "clang_createdat":"2013-09-20 10:48:01",

 "clang_createdby":"User",

 "clang_modifiedat":"2013-09-20 10:48:01",

 "clang_modifiedby":"User"

}

Suppose we wanted to change the name of this pizza. We would use the exact same URL, but in stead of a
GET we would use a PUT request. In the body we pass any properties that we wish to change:

{

“name”: “Quattro Formaggi”

}

If the request is processed correctly, we receive another response with a 200 code and the same resource
URL. Another GET request will confirm that the information has actually been updated:

{

 "clang_createdat":"2013-09-20 10:48:01",

 "clang_createdby":"User",

 "clang_id":"clang_523c0bc14a1bb",

 "clang_modifiedat":"2013-09-20 11:19:02",

 "clang_modifiedby":"User",

 "name":"Quattro Formaggi"

}

Finally, if we wanted to remove the resource, we could use the URL again, but this time with a DELETE
request. This request will return no data or resource headers. The success of the request is indicated by the
response code. To confirm this, we can test whether the resource has been removed by doing another GET
request to the resource URL. This will return a response code 404, with an additional response header

X-Clang-API-Error: Resource not found: {"pizza":"clang_523c0bc14a1bb"}

Note that we can also do a GET request without specifying the id of the resource. The response will consist
of all data that the URL refers to. This may return a very large amount of data, and therefore should be used
with care.

5.3. Complex data requests
The examples above are for a simple table, but can be extended to more complex situations with related

tables. As an example, let's insert an order. Assuming there is a customer in the Clang CRM with id 42 and a
set of pizzas in our data model, we can compose the following request body:

{

 "address": "My place",

 "remarks": "Bang on the door",

 "delivered": false,

 "orderedpizza" : [

 {

 "pizza": "Napolitana",

 "number": 1,

 "remarks": "Hold the olives!"

 },

 {

 "pizza": "Quattro Stagioni",

 "number": 2

 }

]

}

In this order we set the properties of the order itself, but also immediately add two pizzas to the order. A few
important observations apply to the request body:

• We can refer to records in the lookup table containing the pizzas themselves by the value of the field
in the lookup table. We created a lookup relation between the pizza field in the orderedpizza table
and the name field in the pizza table. By refering to the pizza by name in the order, the data model
will create the correct reference.

• We may omit any fields that we don't need, such as the remarks field in the second ordered pizza.
Note that the reference field for the lookup table may also be omitted. The request will succeed, and
the record will be inserted, but any attempt to look up the related data will fail.

If we do a POST request to the following URL

https://.../dataextension/customer/clang_42/order?token=xxxxxxxx

the order is added to the customer record. A GET request to the returned resource URL confirms this:

{

 "address":"My place",

 "remarks":"Bang on the door",

 "delivered":"FALSE",

 "orderedpizza":[

 {

 "pizza":"clang_523ae32af3d75",

 "number":1,

 "remarks":"Hold the olives!",

 "clang_id":"clang_523c3543dc383"

 },

 {

 "pizza":"clang_523ae358a9142",

 "number":2,

 "clang_id":"clang_523c3543dc3ec"

 }],

 "clang_id":"clang_523c3543dc44d"

}

Note how the references to the pizzas have been resolved. Actually, we also could have used the ids of the
pizzas while inserting the order. Now that the order has an id that is returned in the X-Resource header we
can add an orderedpizza record to this order by doing a POST request to the following URL

https://.../dataextension/customer/clang_42/order/clang_523c3543dc44d/orderedpizza?
token=xxxxxxxx

with the body of the request containing just the orderedpizza record:

{

 "pizza":"Margherita",

 "number":1,

 “remarks”: “Extra anchovies”

}

The returned X-Resource will point to the inserted orderedpizza record. Updating or deleting the data works
as demonstrated earlier. For example, updating the number for one of the ordered pizzas can be done by
addressing the ordered pizza in the URL

https://.../dataextension/customer/clang_42/order/clang_523c3543dc44d/orderedpizza/cla
ng_523c3543dc3ec?token=xxxxxxxx

and updating the properties by PUT-ting the following data:

{

 "pizza":"Quattro Stagioni",

 "number":3,

}

Deleting this order can be done by using the same URL and sending a DELETE request.

5.4. Restricting selected data
In GET request the total returned set of information may become very large. Therefore it is possible to
specify the fields that a GET request should be restricted to, by using one or mode 'fields[]' parameters on
the query string. For example, using the following URL

https://.../dataextension/customer?
token=xxxxxxxx&fields[]=order.orderedpizza.remarks&fields[]=order.orderedpizza.pizza

will return a list of all ordered pizzas from all customers, including remarks. Since the 'clang_id' fields are not
selected, the complete dataset is anonymized. If no 'fields[]' parameters are present on the query string, all
fields will be returned.

6. Appendices

6.1. Supported data types

Data type Examples Remarks

String "This is a string." Limited to 1048576 characters.

Date "2013-09-23"
"October 1, 2013"

See http://www.php.net/manual/en/datetime.formats.php
for supported formats.

Time "23:25:00"
"4PM"

See http://www.php.net/manual/en/datetime.formats.php
for supported formats.

Date and time "2013-09-23, 16:00:00"
"October 1, 2013, 4PM"

See http://www.php.net/manual/en/datetime.formats.php
for supported formats.

Yes/No 1
"true"

Boolean type: 1, "true", "on", and "yes" resolve to true, all
other values resolve to false.

Number 42 Signed integer number.

Decimal number 3.1415 Real number with decimal point.

Request data are validated against the defined types, and the REST API will return an error when validation
fails. The X-Clang-API-Error will contain more information on the offending data.

http://www.php.net/manual/en/datetime.formats.php
http://www.php.net/manual/en/datetime.formats.php
http://www.php.net/manual/en/datetime.formats.php

6.2. Data model example documentation
When the documentation for the model described in this manual is requested from the API, the following
information is returned.

Extended data model description for brand Example

Table: customer

This is a system table which has no directly accessible data.

Defined relations

• Table customer contains one or more entries from table order

Table: order

Defined columns

Name Type Description

address string

remarks string

delivered boolean

Defined relations

• Table order contains one or more entries from table orderedpizza

• Table customer contains one or more entries from table order

Table: orderedpizza

Defined columns

Name Type Description

pizza string

number number

remarks string

Defined relations

• Table order contains one or more entries from table orderedpizza

• Column pizza in table orderedpizza refers to column name in table pizza

Table: pizza

Defined columns

Name Type Description

name string

Defined relations

• Column pizza in table orderedpizza refers to column name in table pizza

	1. Introduction
	2. Requirements
	3. Data model
	4. REST requests
	4.1. Basics
	4.1.1. REST URLs
	4.1.2. REST methods

	4.2. REST requests
	4.2.1. Query parameters
	4.2.2. Request body

	4.3. REST responses
	4.3.1. Response codes
	4.3.2. Headers
	4.3.3. Body

	5. Examples
	5.1. Data model description
	5.2. Simple data requests
	5.3. Complex data requests
	5.4. Restricting selected data

	6. Appendices
	6.1. Supported data types
	6.2. Data model example documentation
	Extended data model description for brand Example
	Table: customer
	Defined relations

	Table: order
	Defined columns
	Defined relations

	Table: orderedpizza
	Defined columns
	Defined relations

	Table: pizza
	Defined columns
	Defined relations

